

Validation of Single-Shot Computational Polarized Microscopy for Crystal Analysis of Synovial Fluid

Chesca Barrios, MD¹; Ann Rosenthal, MD²; Geraldine McCarthy, MD³; Tairan Liu¹; Bijie Bai¹; Guangdong Ma¹; Aydogan Ozcan¹; and John D. FitzGerald MD, PhD¹ 1. University of California, Los Angeles. 2. University of Wisconsin. 3. University College Dublin

BACKGROUND	BACKGROUND	METHODS		
CRYSTAL ARTHRITIS (GOUT AND CPPD) IS THE MOST COMMON CAUSE OF INFLAMMATORY ARTHRITIS.	SCPLM: A NOVEL ENGINEERING METHOD FOR IDENTIFTING CRYSTALS IN SYNOVIAL FLUID	In random order, 2 raters presented Eor each crystal Suspects were selected for the Agreement was determined using		
Over 12 million US individuals with gout	A B ↓ Illumination (LED) Left-hand circular polarizer ↓ Arbitrarily polarized light ↓ ↓ ↓ = 455 nm ↓	In random order, 2 raters presented CPLM (2 paired images with analyzer at 90° angles) AND a single bright- field fused SCPLM		
Up to 10 million US individuals with CPPD	Pixelated polarizer camera	image tie-breaker.		

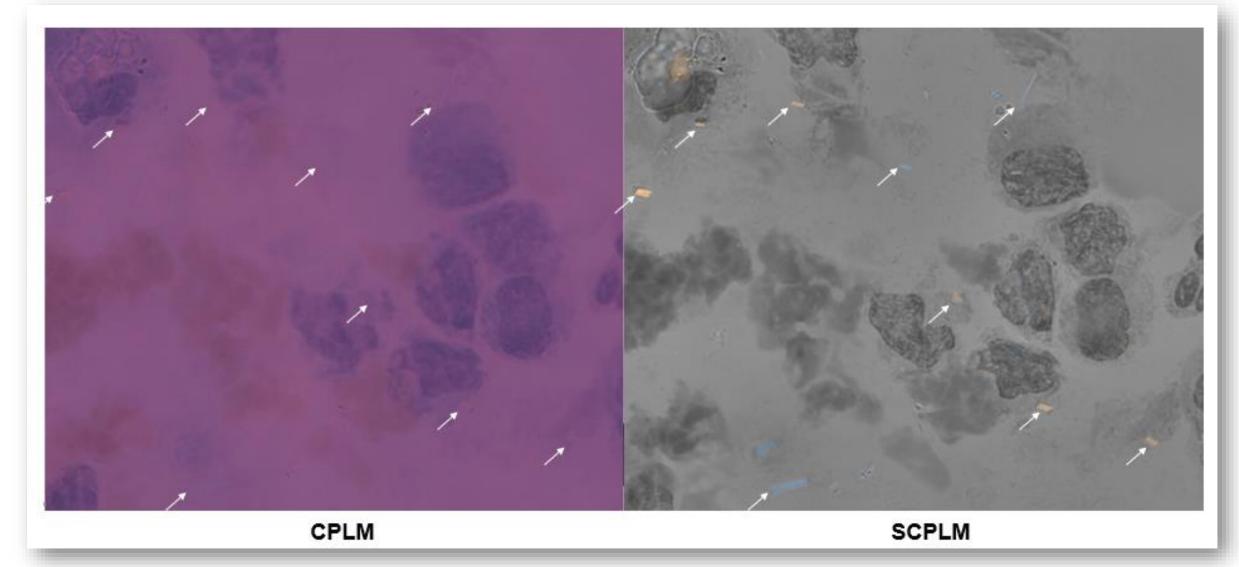
Increasing morbidity and healthcare utilization

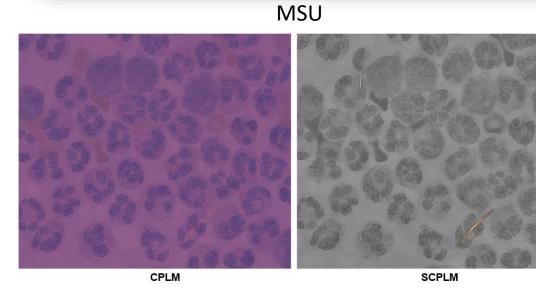
COMPENSATED POLARIZING LIGHT MICROSCOPY (CPLM) IS DIAGNOSTIC GOLD STANDARD BUT HAS LIMITATIONS.

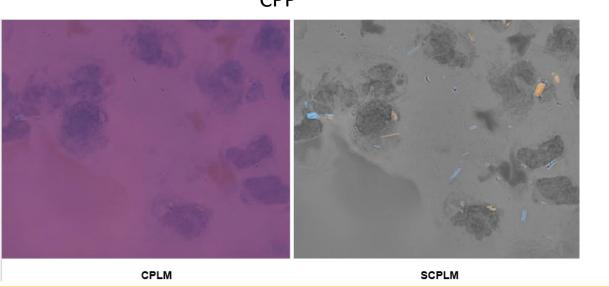
Labor intensive & user-dependent

Sensitive to technician experience & crystal concentration in synovial fluid

Harder to see smaller and less birefringent CPP crystals, compared to MSU


FIGURE 1: A. Single-shot computational polarized light microscopy (SCPLM) setup. B. Schematic diagram of SCPLM setup


CMOS sensor: each pixel has a directional polarizing filter with four axes of polarization (0°, 90°, 45°, 135°).


Combines images from multiple focal depths into a single bright-field fused image.

controls

FIGURE 2: Side-by-side comparisons of CPLM vs SCPLM FOV

FUTURE WORK: AUTOMATED CRYSTAL DETECTION/IDENTIFICATION REPORTS

RESULTS

326 unique crystal objects from the 67 FOV were identified for the analytic set:

For majority of FOVs, SCPLM was preferred method for detecting and identifying crystals

RESULTS

229 CPP, 87 MSU, and 10 suspect crystals (uncertain identity)

The 10 suspect crystals of uncertain identity all came from the negative control FOVs

	CPPD	MSU	Unknown	TOTAL
FOV	29	31	7 (Negative FOV)	67
CRYSTAL SUSPECTS	226	87	10	326
CRYSTAL CONFIRMED	180	77	-	259

Table 1: Suspected and confirmed crystals from 67 FOV using both SCPLM and CPLM

CPP cr

Raters identified higher number of crystals with higher detection rate and sensitivity using SCPLM over CPLM for both CPP and MSU crystals.

ystals	Image	AUC	Sensitivity	Specificity	Detection Rate
	CPLM	0.61	0.35	0.83	0.31
	fused	(0.55, 0.67)	(0.30, 0.41)	(0.67, 0.94)	(0.26, 0.36)
	SCPLM	0.71	<mark>0.62</mark>	0.75	<mark>0.55</mark>
	fused	(0.63, 0.79)	(0.56, 0.68)	(0.58, 0.88)	(0.5, 0.61)

	R1		R2		
	Detection	ID	Detection	ID	
>3					
(Favors					
SCPLM)	62	60	60	59	
3					
(Neutral)	5	5	7	8	
<3 (Favor					
CPLM)	0	2	0	0	
R1 detected R1 ID R2 Detected R2 ID					

4.7 4.8 4.7 4.8

Table 3: Comparing rater preference for crystal detection and identification.

CONCLUSIONS

Greater detection and higher certainty of crystals were observed for SCPLM images over standard CPLM images, particularly notable for CPP crystals.

		•		
1. Detection of candidates	2. Morphological pro	ocessing + filtering		f manual filtering didates that are
- and the first state of the		pixels (11um x 11um)	obviously not a	
	center of mask			
			 Candidates from sample IDs: AW, PK, CJ, PK2	 Candidates from sample IDs: AM, ES, PF, PH1, RG
	Candidates from sample IDs: AW, PK, CJ, PK2	Candidates from sample IDs AM, ES, PF, PH1, RG	CPP candidate folder	MSU candidate folder
	CPP candidate folder	MSU candidate folder	< 25k car	ndidates
	~ 50k (candidates		
. After obtaining the ground truth laboration ascade classifiers will be trained:	els, two			
I candidates detected	Classifier #2	Size, length, width, position 		
Classifier ₩1 No crystal	СРР СРР	Size, length, width, position 		
			orialitation 135 100 100 100 100 100 100 100 100 100 10	
Workflow of Al-pov SCPLM	wered Capture	20 μm using SCPLM Raw image	Reconstructed pseudo-color SCPLM image	
		# of total crystals # of crystals within cel Total sample area imaged (cm ²)	Crystal size Crystal type Crystal size Crystal type Crystal size Crystal size Crystal size Crystal size	count crystal sizeMSU CPPD crystal type

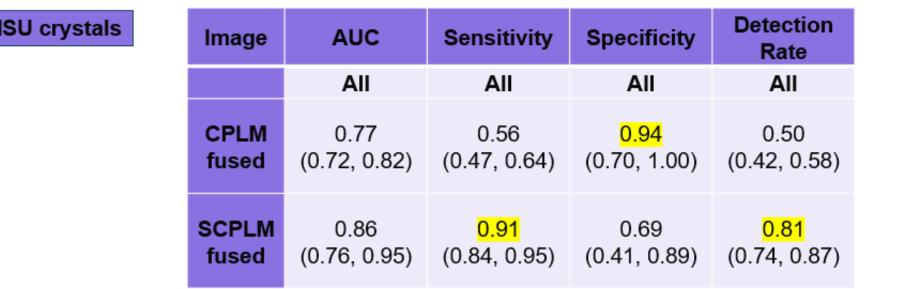


Table 2: Comparing AUC, sensitivity, specificity and detection rate for both MSU and CPP crystals using either method

Future work: optimization of CPP and MSU crystal identification using automated scanning platform

1. Gordon C, Swan A, Dieppe P. Detection of crystals in synovial fluids by light microscopy: sensitivity and reliability. Ann Rheum Dis 1989;48:737-42.

2. Park JW, Ko DJ, Yoo JJ, et al. Clinical factors and treatment outcomes associated with failure in the detection of urate crystal in patients with acute gouty arthritis. Korean J Intern Med 2014;29:361-9.

3. Bai B, Wang H, Liu T, Rivenson Y, FitzGerald J, Ozcan A. Pathological crystal imaging with single-shot computational polarized light microscopy. J Biophotonics. 2020 Jan;13(1):e201960036.

4. Zell M, Zhang D, FitzGerald J. Diagnostic advances in synovial fluid analysis and radiographic identification for crystalline arthritis. Curr Opin Rheumatol. 2019 Mar;31(2):134-143.