

Antibody Drug Conjugates: Solo and in Symphony – Real-World Performance Insights

Ana C. Garrido-Castro, M.D. Assistant Professor of Medicine, Harvard Medical School Department of Medical Oncology, Dana-Farber Cancer Institute Boston, MA

Disclosure Information

San Antonio Breast Cancer Symposium®

December 5-9, 2023 | San Antonio, TX | @SABCSSanAntonio

Ana C. Garrido-Castro

I have the following relevant financial relationships to disclose:

Grant/Research support (to Institution): Gilead Sciences, AstraZeneca, Daiichi-Sankyo, Merck, Zenith Epigenetics, Bristol-Myers Squibb, Novartis, Foundation Medicine, Biovica

Speaker engagement: AstraZeneca

Consulting/Scientific Advisory Board: AstraZeneca/Daiichi-Sankyo, Novartis

Travel/expenses: Roche/Genentech, Gilead Sciences, AstraZeneca, Novartis, Merck

Current landscape of ADCs in HER2-negative MBC

Trastuzumab deruxtecan (T-DXd)

HER2-directed ADC

Unresectable or metastatic **HER2-low** breast cancer (IHC 1+ or IHC 2+/ISH-) after a prior chemotherapy in the metastatic setting <u>or</u> disease recurrence during or within 6 months of completing adjuvant chemotherapy

Sacituzumab govitecan (SG)

TROP2-directed ADC

Unresectable locally advanced or metastatic HR+/HER2- breast cancer after endocrine therapy and ≥2 additional systemic therapies for metastatic disease

Unresectable locally advanced or metastatic **TNBC** after ≥2 prior systemic therapies, at least one of them for metastatic disease

Modified from Bardia A et al. ESMO 2020; Modi S et al. ASCO 2022.

Current landscape of ADCs in HER2-negative MBC

		HR+/HER2- BC	TNBC			
ADC trials in MBC	DESTINY-Breast04	TROPION-Breast01	TROPICS-02	DESTINY-Breast04	ASCENT	
Treatment arms	T-DXd (HER2) vs TPC	Dato-DXd (TROP2) vs TPC	SG (TROP2) vs TPC	T-DXd (HER2) vs. TPC	SG (TROP2) vs. TPC	
HER2 status	1+, 2+/ISH-	0, 1+, 2+/ISH-	0, 1+, 2+/ISH-	1+, 2+/ISH-	0, 1+, 2+/ISH-	
Prior chemotherapy for MBC	1-2	1-2	2-4	1-2	≥1	
Median PFS HR (95% CI)	9.6 vs 4.2 mo. HR 0.37 (0.30-0.56)	6.9 vs 4.9 mo. HR 0.63 (0.52-0.76)	5.5 vs 4.0 mo. HR 0.65 (0.53-0.81)	6.3 vs 2.9 mo. HR 0.29 (0.15-0.57)	5.6 vs 1.7 mo. HR: 0.41 (0.32-0.52)	
Median OS HR (95% CI)	23.9 vs 17.6 mo. HR 0.69 (0.55-0.87)	N/A HR 0.84 (0.62–1.14)	14.5 vs 11.2 mo. HR 0.79 (0.65-0.95)	17.1 vs 8.3 mo. HR 0.58 (0.31-1.08)	12.1 vs 6.7 mo. 0.48 (0.38-0.59)	
ORR	52.6% vs 16.3%	36.4% vs 22.9%	21% vs 14%	50.0% vs 16.7%	35% vs 5%	

1. Is there a preferred initial ADC?

2. Is there a role for sequencing of ADCs?

Modi S et al. ESMO 2023; Bardia A et al. ESMO 2023; Tolaney S et al. ASCO 2023; Bardia A et al. NEJM 2021.

Mechanisms of resistance to ADCs

Coates et al. Cancer Discov 2021;11(10):2436-45.

Is there benefit with ADC2 after ADC1?

- Significantly shorter median TTP with ADC2 vs ADC1: >, ≈, or < than other standard therapy (i.e., chemotherapy)?</p>
- How to identify patients who appear to derive similar or greater benefit from ADC2 than ADC1?

Abelman RO et al. SABCS 2023; Huppert LA et al. SABCS 2023.

Cross-resistance to TOP1inh ADCs

N=20 pts with available tissue WES

- TOP variants (resistance to payload): time point of emergence?
- Genomic alterations that confer resistance to target?
- Other mechanisms of resistance?
 - ADC intracellular trafficking
 - Lysosomal metabolism
 - Increased drug efflux of payload (ABC transporters)

Abelman RO et al. SABCS 2023.

Is there a preferred initial ADC: TROP2 vs HER2?

Raghavendra AS et al. SABCS 2023.

Raghavendra AS et al. SABCS 2023.

Median PFS		Abelman et al.		Poumeaud et al.		Huppert, Mahtani et al.		
HR+	SG → T-DXd	ADC1 (SG)	N=7	8.3 mo	N/A		N=24	8.0 mo
		ADC2 (T-DXd)		5.6 mo			N-24	3.7 mo
	T-DXd → SG	ADC1 (T-DXd)	N=11	4.9 mo	N=56	2.7 mo	N=32	5.5 mo
		ADC2 (SG)		1.7 mo		2.3 mo		2.6 mo
HR-	SG → T-DXd	ADC1 (SG)	N=14	7.7 mo	N=100	4.9 mo	N=25	7.8 mo
		ADC2 (T-DXd)		2.8 mo		3.2 mo	N-23	2.8 mo
	T-DXd → SG	ADC1 (T-DXd)	N=7	1.4 mo	N/A		N=3	NR
		ADC2 (SG)		3.1 mo			IV-3	NR

			Median 2 (0-9)			Median 2 (0-5)					
				before ADC1		before ADC1*		re ADC1*			
Median PFS		Abelman et al.		Poumeaud et al.		Huppert, Mahtani et al.					
	SG → T-DXd	ADC1 (SG)	N=7	8.3 mo	N/A		1//	N=24		8.0 mc	כ
HR+		ADC2 (T-DXd)		5.6 mo			N-24		3.7 mc)	
пкт	T-DXd → SG	ADC1 (T-DXd)	N=11	4.9 mo	N=56	2.7 mo	N=32		5.5 mc)	
		ADC2 (SG)		1.7 mo		2.3 mo			2.6 mc)	
	SG → T-DXd	ADC1 (SG)	N=14	7.7 mo	N=100	4.9 mo	N=25		7.8 mc)	
HR-	30 7 I-DV0	ADC2 (T-DXd)		2.8 mo		3.2 mo			2.8 mc)	
пк-	T-DXd → SG	ADC1 (T-DXd)	N=7	1.4 mo	N/A		N=3		NR		
		ADC2 (SG)		3.1 mo			I/A	11/-5		NR	
			Median 4 lines		M	Median 4 (1-11)					
			befo	re ADC2	-	befor	e ADC2				

*HR- T-DXd → SG: median 3 (1-5) lines

*HR- T-DXd → SG: median 3 (1-5) lines

Does immediate vs delayed sequential therapy matter?

Conclusions

- Preferred initial ADC approach remains unclear and may depend on multiple factors (e.g., receptor status, cell surface target expression, intrinsic resistance to payload):
 - With new ADCs in development, will there be a preferred ADC1 ("one size fits all" vs. biomarker-informed approach): direct comparisons of ADCs, correlative science
- After progression on ADC1:
 - Unknown if clinical outcomes with ADC2 are >, <, or ≈ to other therapies: If/how will ADC2 (and beyond) be compared to standard chemotherapy?
 - Subgroup of patients derive clinical benefit from ADC2: How to identify these patients?
- Optimal sequence of TROP2 or HER2 approved ADCs remains unclear
- Understanding the primary mechanism(s) that drive ADC resistance is key to inform subsequent treatment strategies
- Given limitations of real-world data (retrospective, tumor heterogeneity, patient selection bias, lines of prior therapy), prospective concerted research efforts are needed

TBCRC Registry of Sequential Use of ADCs for HER2-low MBC

Study Chairs: L. Huppert, H. Rugo

TBCRC 064: <u>TReatment of ADC-Refractory Breast Cancer with</u> Dato-DXd or T-DXd: TRADE-DXd

Eligibility:

- Confirmed unresectable locally advanced or metastatic disease
- History of HER2-low breast cancer (any prior primary or metastatic tumor) defined as IHC 1+ or 2+/ISH non-amplified
- Most recent pathology: HER2 IHC 0 or HER2-low
- Measurable disease
- No prior topo-I inhibitor-based therapy

Allocation 1:1 to T-DXd or Dato-DXd as ADC₁

Study Chair/Overall PI: A. Garrido-Castro

Acknowledgements

- Hal Burstein
- Nancy U. Lin
- Sara Tolaney

